基于不同荧光发射峰进行的多通道检测技术被广泛用于生物医学领域。然而由于活体组织复杂结构对不同波长具有的不同吸收和散射作用,即使利用近红外二区荧光在生物组织中低散射和吸收的特性,活体多重检测的定量准确性仍然有待提高。目前利用镧系元素掺杂的荧光材料进行近红外二区寿命多通道检测取得了突破性的进展,然而该类材料在构筑不同荧光寿命的探针的同时,往往会造成探针之间较大的荧光强度差异,特别是短寿命材料的荧光强度通常较弱,易受到背景噪声的干扰,从而难以实现多样品信息的同时精确解析。
针对上述问题,张凡教授研究团队设计了以Er3+作为发光中心的、双界面结构镧系纳米颗粒 (Er-DINPs:α-NaYF4@NaErF4: x%Ce@NaYbF4@NaErF4: x%Ce@NaYF4),通过平衡Yb3+的敏化作用及Ce3+的促进交叉弛豫作用对 Er3+荧光强度和寿命进行调节,成功实现了Er3+近红外二区下转换(1525 nm)荧光强度增强和荧光寿命可调的特性。利用材料优势,该工作进一步证明了在保证多样品间荧光强度差异较小(强度差异< 20%)的条件下,可以在较低的信噪比下解析出更准确的荧光寿命值(解析误差<10%)及信号区域(像素保留率>80%),最终实现高保真荧光寿命多通道成像(有效像素保留率>80%)。该工作为镧系纳米材料荧光强度和寿命的灵活调控提供了新思路,同时也为提高活体寿命多通道成像的半定量或定量分析准确性提供了重要参考。这一研究成果以“High-fidelity NIR-II multiplexed lifetime bioimaging with bright double interfaced lanthanide nanoparticles”为题在线发表于《德国应用化学》(Angew. Chem. Int. Ed., 2021, 60, 23545-23551)。课题组硕士研究生朱昕燕为第一作者。
该工作得到了bet365中国-bet365大陆 、复旦大学先进材料实验室、聚合物分子工程国家重点实验室、上海市分子催化与功能材料重点实验室、国家重点研发项目、国家自然科学基金杰出青年基金、国家自然科学基金基础科学中心项目和上海市科学技术委员会基础研究项目的大力支持。
示意图: (a) 纳米颗粒多层结构示意图;(b) 荧光发射光谱及荧光寿命光谱图;(c) 不同荧光强度材料进行寿命多通道成像解析效果对比图;(d) 活体实时荧光强度成像及寿命多通道成像示意图。